PEPE0.00 -14.71%
SUI4.72 0.95%
TON4.97 -6.88%
TRX0.23 -4.48%
DOGE0.37 -7.07%
XRP3.09 -2.33%
SOL281.16 15.16%
BNB687.00 -1.95%
ETH3179.17 -3.26%
BTC104362.88 0.76%
PEPE0.00 -14.71%
SUI4.72 0.95%
TON4.97 -6.88%
TRX0.23 -4.48%
DOGE0.37 -7.07%
XRP3.09 -2.33%
SOL281.16 15.16%
BNB687.00 -1.95%
ETH3179.17 -3.26%
BTC104362.88 0.76%
ETH Gas36.93 Gwei
贪婪 77
撰文:NingNing
今天在微软 AI 工具新 Bing 的帮助下,做出了一个酷东西:基于流行病学模型 SIR 分析 Web3 叙事的传播机制。
SIR 模型是流行病学中一个经典的数学模型,是最成功、最著名的传染病传播模型之一。
在 SIR 模型中,全体人口被划分成三类人群:
易感人群(S):尚未被传染的人群,但缺乏免疫能力,与感染者接触后容易受到感染。
感染人群(I):已经被感染并具有传播力的患者群体。
康复人群(R):从感染中恢复并且取得免疫的人群。
这个模型不但可以帮助我们理解和预测传染病的传播过程,也可以帮助我们理解和预测 Web3 叙事的传播过程。
关于这点,读过《叙事经济学》的朋友们都懂的。
科普结束,下面我们开始真正的表演:
第一步:初始化条件
易感人群(S)= 某 web3 叙事的潜在目标用户比例
感染人群(I)= 已相信某 web3 叙事的用户比例
康复人群(R)= 已脱敏某 web3 叙事的用户比例
beta = 相信某 web3 叙事的转化率
gamma = 脱敏某 web3 叙事的转化率
我们设定:
S=0.9,I=0.1,R=0.0,beta=0.8,gamma=0.01
第二步:生成 10000 个随机数,从 Scipy 库导入 SIR 模型,再传入我们的初始化参数处理数据。
第三步:重整数据,使用移动气泡图可视化 web3 叙事传播过程。
可视化结果见附图,在以上初始化条件下,~72% 的用户会选择长期相信某 web3 叙事,即加密行业常说的形成稳定「共识」。
此外,我还测试了另外两组初始化条件:
第一组的 web3 叙事特性是高传播率、高脱敏率,初始化条件为:S=0.9,I=0.1,R=0.0,beta=0.8,gamma=0.2。
可视化结果显示,仅 1%~3% 用户会选择长期相信这一组 web3 叙事。
第二组的 web3 叙事特性是中等传播率、低脱敏率,初始化条件为:S=0.9,I=0.1,R=0.0,beta=0.5,gamma=0.01。
可视化结果显示,会有 62%~76% 用户会选择长期相信这一组 web3 叙事。
结论:对于某特定的 Web3 叙事,如 RWA、L2、Web3 游戏、铭文等,我们可以观察和统计其叙事传播中的 beta 值和 gamma 值,预测其能否形成长期稳定的共识。
欢迎加入深潮TechFlow官方社群